

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIF. 93940

THE DESIGN OF A MICROCOMPUTER BASED

GENERALIZED PROCESS CONTROL SYSTEM

by

Frank Joseph Nelson

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science of Electrical Engineering

University of Washington

1932

SSr-
MASTER'S THESIS

In presenting this thesis in partial fulfillment of the re-

quirements for a Master's degree at the University of Wash-

ington* I agree that the Library shall make its copies

freely available for inspection. I further agree that ex-

tensive copying of this thesis is allowable only for schol-

arly purposes) consistent with "fair use" as prescribed in

the U. S. Copyright law. Any other reproduction for any

purposes or by any means shall not be allowed without my

written permission.

University of Washington

Abstrac t

THE DESIGN OF A MICROCOMPUTER BASED

GENERALIZED PROCESS CONTROL SYSTEM

By Frank Joseph Nelson

Chairperson of the Supervisory Committee:

Professor William E. Moritz
Department of Electrical Engineering

Physical processes/ involving the movement of fluids

or materials in time and space/ require feedback control

systems to maintain process variables such as flowrate.-

temperature and pressure at predetermined values to enable

the products of the process to be correct For many years

this area of control was dominated by analog control de-

vices* both electronic and mechanical. With the advent of

minicomputers in the 1960's large plants converted from us-

ing many individual controllers to using a central computer

to control all process variables. The introduction of mi-

croprocessors in the 1970's has brought a shift in smaller

plants from individual analog controllers to individual and

mul t i var iab 1 e microprocessor control systems.

This design provides a very generalized controller,

using an Intel single board microcomputer* a 16 channel

analog-to-digital converter, a 4 channel digital-to-analog

converter, a floating point arithmetic processor and a

16K-byte memory expansion board to implement a process con-

trol system. The software is resident in 8K-bytes of Read

Only Memory and provides 4 Modes of Operation.

The Modes of Operation available to the user are:

1) File Mode, which offers an easy to use, menu-oriented,

interactive way to define a desired process control strat-

egy; 2) Modify Mode, which enables simple and quick in-

teractive editing and revision of a process control strate-

gy; 3) Run Mode, which translates the control strategy

into a real time process control program and executes it;

and 4) Terminal Mode, in which the system becomes a remote

terminal of a larger computer.

The key feature of this system is the fact that the

user does not write a computer program to obtain real time

computer control of the process. Instead, the user pro-

vides the process control system with elements of the math-

ematical description, or configuration, of the control

system desired, and the process control system applies

these elements to a generalized real time control program

resident in the system. This program, now tailored for a

specific process, is used to actually sample inputs Prom

the process and provide the needed signals to control the

process.

TABLE OF CONTENTS

LIST OF FIGURES iii

LIST OF TABLES v

Chapter 1. PROJECT DEFINITION 1

INTRODUCTION 1

PROBLEM STATEMENT 7

Chapter 2. DESIGN SPECIFICATIONS 12

OVERVIEW 12

SYSTEM SPECIFICATIONS 14

Chapter 3. HARDWARE DESIGN 1?

HARDWARE REQUIREMENTS 1=?

HARDWARE SELECTION 23

HARDWARE DESCRIPTION 25

HARDWARE CONNECTION DATA 37

Chapter 4. SOFTWARE DESIGN 44

INTRODUCTION 44

SOFTWARE ORGANIZATION 44

SOFTWARE DESCRIPTION 52

PROGRAM LISTING 71

Chapter 5. CONCLUSIONS 72

SYSTEM TESTING 72

ADVANTAGES OF THE SYSTEM 73

DISADVANTAGES OF THE SYSTEM 75

POTENTIAL IMPROVEMENTS 76

LIST OF REFERENCES 73

Appendix A. USER'S MANUAL SO

Appendix B. MEMORY MAP . 88

1ST GF FIGURES

Number

1. Control of a Physical Process

2. Analog Temperature Controller

3. Block Representation of Process Control

4. Process Control System, Simplified Block Diagram

5. Process Control System, Detailed Block Diagram

6. SEC BO/24 Single Board Computer, Block Diagram

7. SBC 116A Expansion Board, Block Diagram

S. SEC 711 Analog Input Board, Block Diagram

9. SEC 724 Analog Output Board, Block Diagram

10. System Connection Panel

11. Software Organization, System Routines

12. Software Organization, Configuration Functions

13. Software Organization, Run Functions

14. System Menu

15. Configuration File Routine, Defining a Block

i 6

.

C o n f i o u r a t i o n File Routine, Defining an Output

17. Run Configuration Routine, Real Time Display

A.i. System Block Diagram

A. 2. Single Loop Feedback Example

A . 3 . System Menu

A. 4. Example of Block Definition

4

19

JO

35

43

46

49

^1

cO

dt

©4

wo

A. 5. Example P 9. un Mode D i s p ay b:

LIST Or TABLES

Number Page

1. Hardware Configuration Alternatives 24

2. Input/Output Port Assignments 38

3. Process Control System; Address Assignments . . . 39

4

.

Process Control System.. Input Connections . . 41

5. Process Control System.- Output Connections . 42

6. Configuration File Structure 47

7. Run Time Tables 48

B. 1. Process Control System, Memory Map 36

AC KNGWLEDGEMENTS

I wish to express my sincere appreciation to Professor

William E. Moritz for his guidance and careful critical re-

view of this effort. I would also like to thank Professor

N. L. Picker of the Chemical Engineering Department for

identifying the need for a process control system and for

helping to establish the goals of the project. In addition.,

special thanks go to Douglas K. hedema of the Electrical

Engineering Department/ without whose assistance in learn-

ing to use the logic development systems this project might

not have been completed.

I would also like to express appreciation to the Intel

Corporation^ whose generous donation of equipment made the

development of the process control system for the Chemical

Engineering Department possible.

For their help and understanding all of the time that

I was with this project instead of with them.- I am deeply

grateful to my wife Lori and my son Eric.

Chapter 1

PROJECT DEFINITION

INTRODUCTION

Process control is the term applied to attaining and

maintaining specific conditions in a physical process.

These conditions are referred to as process variables,

<PV). The desired value of the condition being controlled

is called the set point. The five most commonly controlled

process variables are flou;> level/ pressure* temperature

and composition. C 1 3 Figure 1 illustrates the relationship

between a physical process and the mechanism which is used

to control it.

Actuators

Outputs

Physical

Process

Process

Control

System

Sensors

Inputs

Figure 1. Control of a Physical Process

The mechanism used to control the process variable

uses an algorithm to convert the difference between the Pv*

and the set point/ the error* into a control signal for the

actuator. The most commonly used algorithms include

On/Off* Proportional* Proportional plus Integral and Pro-

portional plus Integral plus Derivative. On/Off is simply

a switching action. When the PV exceeds the set point* the

actuator is turned full on or full off. Proportional con-

trol (P) provides a signal that varies directly with the

error. Equation (1) describes the P control algorithm.

m *s K * e

Where: m is control signal.

K is proportional gain factor.

e is set point - process variable.

Equation (1)

Proportional plus integral (PI) control provides a control

signal that is the sum of a simple proportional element and

the time integral of the error. The PI control algorithm

is shown in Equation (2).

m = K * < e + R # I e dt

Where: m is control signal.

K is proportional gain factor.

e is set point - process variable

R is Reset* the reciprocal of

the integral time constant.

Equation (2)

Proportional plus Integral plus Derivative <PID) control

adds to the proportional and integral actions the time rate

of change of the error. This derivative action improves

dynamic response in many control loops. C23 The PID con-

trol algorithm is shown in equation (3).

3m = K * < e + e dt + D * de/dt > Equation (3)

Where: m is control signal.

K is proportional gain factor.

e is set point - process variable.

R is Reset.

D is Rate, the time constant of

the derivative action.

For a single variable case, such as temperature, de-

pendent on only a single input, it has been easy to develop

simple hardware controls to maintain the process variable

at a preset level, such as shown in Figure 2. The potenti-

ometer provides the set point voltage which is compared by

the LM 3911 with an internally generated temperature depen-

dent voltage to produce a control signal for the triac in

series with the heating element. Z31

Thr*»«Vir« Electronic TtwrmoitM

imp la

IU\i
IM1 (MAM*: II a* TO Jfcw

rgtnv.c

inV^t"

-T r 1.
-Wr*

W-

1
, l/JW

^rW ll

IHM 141 OR UH IflUIV MIOCE

Figure 2. Analog Temperature Controller

(National Semiconductor Linear Databook, p 9-106.)

Process Controllers designed for local control of a

single variable become much more complicated with the re-

quirement for user selectable control algorithm, time con-

stants, gain and other parameters. To provide the user

with wide ranges in these values, it is difficult and cost-

ly to implement controllers in analog hardware. Advances

in digital hardware have offered some relief, but the tech-

nique of centralized control of a large number of process

variables using a computer system has until recently been

the area of primary interest. In the early 1960s large

plants began shifting from using a large number of local

hardware PID type controllers to using the then new "mini-

computers" to sample the process variables for the entire

plant and generating appropriate control signals for all of

the actuators. A complex system of communications lines*

called a data hiway; connected the minicomputer in the

plant control room with the various sensors and actuators.

C4; 5» 6D For small plants* the cost of a minicomputer sys-

tem was prohibitive/ so individual analog process control-

lers continued to fill the majority of process control re-

quirements.

The advent of the microprocessor in the early 1970s,

brought the power and versatility of software control down

from the large systems to the range of single variable con-

trollers. The microprocessor^ a 4, 8/ or 16 bit computer

central processor; offers extensive software control capa-

bility; versatility; small size and low cost. Like the

larger computer systems; however; it must be programmed in

order to be used. Commercially available units vary great-

ly in the amount of "programming" involved in making the

controller perform the functions needed by the user. The

simplest available microprocessor based controllers involve

switch selection of algorithm and parameters from a control

panel* in much the same way as similar analog controllers.

More versatile units require the user to enter the neces-

sary data in a problem oriented or special application

language from a terminal or data entry panel. These units

typically provide control for up to 16 variables. Larger

microprocessor based controllers frequently use a high

level computer language for programming and are competitive

with minicomputer systems. C73

The major difficulty in providing a useable microproc-

essor based controller. especially one designed to handle

a number of process variables and capable of using a varie-

ty of control algorithms, is in developing the software for

it such that the user does not need to write a computer

program in order to use the system. This requires the sys-

tem designer to develop software which can communicate

conversationally with the user to aid the user in selecting

the control functions and parameters in much the same

manner as he would do if using a classic hardware control-

er. This research will investigate doing just that. de-

signing a microprocessor based process control system with

user-friendly software that will enable the user to easily

control a number of process variables using familiar con-

trol algorithms without having to wrestle with programming

the processor.

PROBLEM STATEMENT

A need exists for such a microcomputer based process

control system within the Chemical Engineering Department

of the University of Washington. Students in the Process

Dynamics and Control classes currently use an analog com-

puter system to simulate the operation of a process and to

simulate real time control of the process. However) no ac-

tual real time control is available for a physical process.

Since a number of types of processes need to be investigat-

ed/ and for each process several control strategies need to

be compared; it would not be feasible to obtain dedicated

hardware controllers for every case. A microprocessor

based control system offering selectable control algorithms

and providing control over several process variables would

give the flexibility needed. Students would be using the

system to aid them in the design and testing of control

strategies* not to learn how to write and debug computer

programs for this particular system. As a result, the sys-

tem must provide the student with a "non-programming" com-

munication format> such as selection from a menu or

"f i 1 1-in-the-b lanks; " to use in describing the control

strategy desired.

The requirements for a process control system for this

generalized application have been developed with the help

of Professor N. L. Ricker of the Chemical Engineering De-

partment and can be summarized as follows:

1. The system must be interactive with user via a

terminal.

2. The system must provide an easy way for the

user to describe the process and the control

strategy desired.

3. The user must be able to specify the following:

a. The sample and control update period.

b. Which system input channels will be used.

c. Which system output channels will be used

d. What data to collect for later analysis.

e. The control strategy to use.

The last item* specifying the control strategy/ in-

volves considerably more than is immediately apparent. One

system of notation used in process control involves func-

tional blocks which represent control actions such as sum-

ming two inputs* multiplying two values or providing a con-

trol signal proportional to the time integral of the

difference between a process variable and a set point. In

this notation system/ the block is a computational step

that follows almost directly from the control strategy. A

block consists of its inputs/ its output and the operation

it performs in between. For example/ PI control could be

easily defined in terms of one block/ a PID block/ with a

specified Reset* with Rate equal (to disable derivative

action); a specified overall gain* a desired set point, the

source of the input variable and the destination of the

output control signal. Since potential users are likely to

be familiar with this notation, it would be advantageous to

them if it were utilized by the system. Figure 3 demon-

strates the comparison between the block diagram of a feed-

back temperature control system and a "block" notation de-

scription of the same system.

^M>X^
process variable

I

Tpr ocess

a. Block Diagram

Tset

(x-y >*G1 U Proc ess

process variable

V
i

x x*g; Tproc ess

b. Block Notation

Figure 3. Block Representation of Process Control

The minimum specific block "types" the system should

10

provide are as follows:

1. ADD Output equals sum of two inputs

multiplied by gain factor.

2. SUB Output equals difference of two inputs

multiplied by gain factor.

3. MUL Output equals product of two inputs

multiplied by gain factor.

4. DIV Output equals quotient of two inputs

multiplied by gain factor.

5. SQRT Output equals square root of input

multiplied by gain factor. (SQT)

6. SCALE Output equals input multiplied by gain

factor. <SCL)

7. PID Propor t i onal-Integral-Der i vat i ve Control

Block. Output equals sum of three com-

ponents multiplied by gain factor. User

selects 1 of 3 modes, P, PI, PID, by

choice of Rate, the derivative time con-

stant, D, and by choice of Reset, the

reciprocal integral time constant, R.

The complete description of the resulting process con-

trol strategy and the necessary connections to the physical

process will be called a "configuration. " The system must

be able to obtain this information from the user, use it to

tailor a resident real time program to meet the user's

needs and< at the direction of the user, execute this pro-

gram to provide control of the process. To be useful in

the expected student environment* the system must provide

an easy to use means to revise a configuration once it has

been given to the system* either to correct an error or to

alter the control strategy. To some extent) this editing

feature must also be available during the actual running of

the control program. The latter is needed to enable han-

dling of initial conditions, changes in references, and

comparison of different selections of gain factors.

One last feature is desirable in the Chemical En-

gineering instructional environment. The system should be

able to operate as a remote terminal of the department's

PDP-11/60 computer through a serial RS-232C data link.

Using the data link, the students are able to input and ex-

ecute numerical analysis programs operating on data obtain-

ed for them by the process control system. They may also

use any other features of the PDP-11 computer, including

text editing, file operations and other applications pro-

gramming.

Chapter 2

DESIGN SPECIFICATIONS

OVERVIEW

To truly be able to handle the "general case" a proc-

ess control system would need to have an infinite number

of communication channels/ be able to provide an infinite

number of control blocks* etc. Real i st i cal ly * the general

case can be approximated with a modest system* since the

purpose of a process control system is to control a real*

finite process. Recognizing that this system will be used

in an academic environment* the scope of process control

blocks can be expected to be less than that required of

commercial units. Many available programmable process con-

trollers are designed to handle from 1 up to 8 or 16 vari-

ables. C73 In the Process Dynamics and Control class envi-

ronment* the largest experiment planned consists of two

cascaded continuous stirred-tank reactors with control de-

sired over the flow into and temperature of each. This

would require 4 output lines and at least 4 input lines. A

complex control strategy would look at more process state

variables than just the 4 being controlled to determine

what control signals to send to the respective 4 actuators.

To permit maximum use of the mathematical operations possi-

ble with the system* sufficient inputs are necessary to re-

23

ceive several sensor signals per controlled variable. For

example* to provide very accurate control of the internal

temperature of a continuous st irred-tank chemical reactor,

the control strategy would be based on the current tempera-

ture in the reactor, the flow rate of chemical stock into

the reactor, the temperature of the stock flowing into the

reactor and the flow rate of the chemical products leaving

the reactor. This strategy would require 4 input channels

for the sensors and 1 output channel for the reactor heater

control. Different control strategies will obviously call

for different combinations of inputs and outputs, although

it would appear from the expected use that this 4 to 1

ratio should be provided. As a result, it would be desir-

able for this system to have 16 input channels to fully

support its 4 output channels.

Reviewing definitive texts on process control. CI. 23.

confirmed that a practical process control system must have

P. PI. PID functions available, a means to obtain a square-

root of a process variable (to linearize certain types o-F

variables) and a means to interconnect control loops for

cascade control strategies. The literature also points to

sampling rates in the neighborhood of 1 second.

While the Chemical Engineering Department at the Un-

iversity of Washington does not currently have experiments

set up utilizing real time control of physical processes.

14

it does have the process equipment with the necessary sen-

sors and actuators for use with this process control sys-

tem. The equipment is currently used to demonstrate proc-

ess dynamics* but feedback control is not available. These

sensors provide* and the actuators utilize* proportional

to +5 volt D. C. signals.

Using this information., the desired specifications for

this process control system were developed.

SYSTEM SPECIFICATIONS

A. Communications Channels:

1. 16 analog input channels.

2. 4 analog output channels.

3. Analog signal range to +5 volts.

4. RS-232C Serial data channel to PDP-11/60 computer.

B. System Sampling Rate:

1

.

User specified.

2. All channels sampled at same rate.

3. Min: 0. 1 sec; Max: 10. sec.

4. Resolution: 0. 01 sec.

C. System Operating Modes:

Operating modes are selected by user from the

system terminal.

1. CONFIGURATION.

a. Interacts with user to create a confiq-

15

uration file in memory which describes

the desired process control system,

b. Configuration file includes file name/

sample rate/ inputs/ outputs/ definition

of signal paths/ set points and functional

blocks used.

2. MODIFY.

Interacts with user to permit editing

of a configuration file in memory.

3. RUN.

a. System configures real-time process

control program according to contents

of configuration file currently in

memory.

b. On command/ executes that program.

c. System responds to terminal input

to change parameters during execution.

4. TERMINAL.

a. System emulates PDP-11/60 remote terminal.

b. Enables transfer of data and configuration

files to and from PDP-11/60.

c. Enables user full access to PDP-11/ 60.

D. Functional Blocks:

1. Quantity: 32/ any combination of types.

2

.

Inputs:

a. 2 per block; except SGT and SCL which have i.

b. Permitted values:

1. Any input channel.

2. Output of any block.

3. Decimal Constant up to 5 digits maximum.

Types:

a. Operational: Provides mathematical operation

on 2 input s , x and y, except as noted.

1. ADD <x+y)*Gain.

2. SUB <x-y)*Gain.

3. MUL < x-fry)*Ga in.

4. DIV <x/y)*Gain.

5. SQT <SQRT<x>)*Gain.

6. SCL (x>*Gain.

b. Control: Provides P, PI or PID control algo-

rithm on inputs x and y. User selects which

algorithm by choice of Rate and Reset param—

eters. The algorithm choice is shown below:

1. P Reset = 0, Rate = 0.

2. PI Reset = finite, Rate = 0.

3. PID Reset = finite, Rate = finite.

Gain:

a. Block gain is multiplied times the output

of the function performed.

b. Decimal Constant up to 5 digits maximum.

1 /

5. Block Output Option:

a. Each block may be optionally placed in a

manual mode where its output is forced to be

a constant value supplied by the user.

b. Option is selected /rejected by yes /no entry.

c. If yes* output value of decimal constant

up to 5 digits maximum is required.

d. If no. the normal output of the block is

utilized and no constant is required.

6. PID parameters:

a. Rate, D: From to 99999 Seconds.

b. Reset, R: From to 99999 1/Sec.

E. Data Collection:

1. User may select up to 6 points in the configuration

from which to collect data each sampling period.

Values of these points will be displayed on the

terminal in real time during Run Mode. They

may also be sent to the PDP-11/60 computer and

saved in a data file there for later analysis

and p lott ing.

2. Permitted points in the data file:

a. Any input channel.

b. Any block output.

F. Input Connections:

1. All input channels are scanned by the system. Only

18

those channels named as inputs to blocks or which

are connected to output channels are actually used.

2. An input channel may be used any number of

times.

G. Output Connections:

1. User specifies which internal signals go to

those output channels (maximum of 4) that are

to be used.

2. Permitted signals:

a. Any input channel.

b. Any block output.

H. User Control:

1. User exercises control from CRT terminal.

2. User selects options from menus displayed.

Chapter 3

HARDWARE DESIGN

HARDWARE REQUIREMENTS

The requirements for hardware components and their in-

terconnections stem from the need to implement the process

control system specifications given in the previous

chapter. Figure 4 offers a simplified block diagram of the

complete hardware system to aid in visualizing the individ-

ual components that will be required.
I

System

Terminal
>

Central

Processor

~7FT

DAC ADC

Physical Process

*
PDP-11/60

Comp ut er

Figure 4. Process Control System, Simplified Block Diagra m

Starting with the Central Processor, the following re-

quirements can be readily identified for the hardware com-

ponents.

A. Central Processor.

The Central Processor must contain the system software

in its memory and execute it to provide the system operat-

ing modes specified. This includes communication with the

terminal/ with the process and with a second computer. It

also means the Central Processor must be able to operate in

real time. To accomplish this it must have the following:

1. Interrupt processing capability and at least

one programmable timer.

2. Memory capacity of at least 8K bytes of ROM to

handle the estimated program size and SK of RAM

for the estimated variable data requirements.

3. Two serial port controllers (USARTs) for com-

munication with the system terminal and for

communication with the PDP-11/60 computer.

4. Capability to control and communicate on a bi-

directional parallel data bus.

5. Capability for floating point operations*

preferably in hardware, to handle the number of

calculations necessary within the time allotted

by the real time program. Particularly desired

are multiply* divide, add, subtract, square-

21

root* integer to floating point and floating

point to integer conversion.

B. Anal og-to-Di g i tal Conversion

The Anal og-to-Di g i tal Converter (ADC) in Figure 4

refers to the conversion of analog signals received from

the process equipment to equivalent binary integers. The

software can then convert them to floating point numbers

and manipulate them in the central processor while running

a real time control program. The converter must have the

following characteristics:

1. Multiplex 16 analog inputs into the converter.

2. Input range of to +5 volts DC full scale.

3. Provide 12 bit straight binary integer output.

4. Program controllable for channel selection and

conversion start.

5. Bus compatable with central processor.

C. Di g i tal-to-Analog Converter

The Di g i tal— to-Ana 1 og Converter (DAC) converts the bi-

nary integers generated by the software to analog voltages

between and + 5 volts DC that can be used by the process

equipment actuators. The DAC must have the following char-

ac ter i st i c s

:

1. Have 4 independent DACs, each with a 12 bit

straight binary input and a to +5 volt DC

output.

2. Bus compatable with central processor.

D. System Terminal

A data entry terminal is necessary for user communica-

tion with the system. For the anticipated brief exchanges

of prompts, system commands, menu selections and real time

data a video terminal with minimal features is sufficient.

It must at least have:

1. Ability to recognize full ASCII character set.

2. Full duplex capability to enable communication

through the process control system to the

PDP-11 in the Terminal Mode.

3. Direct cursor addressing to enable display for-

matting, especially during Run Mode.

E. Support Components

A chassis, power supply and connection panel will be

needed to support these components. The chassis must in-

clude the bidirectional bus for the processor and other

components to communicate with each other. The connection

panel provides coaxial BNC connectors to permit connection

:"3

of the system to the physical process it is to control.

HARDWARE SELECTION

Of the available microprocessors, any one of the S

or 16 bit processors would meet the hardware requirements.

Depending on the processor chosen, varying amounts of addi-

tional circuitry and board design effort would be required

to make the processor functional in this application. A

number of manufacturers of processors also offer "single

board computer" assemblies which contain the processor and

the supporting hardware necessary to operate the processor

almost as a stand alone unit. Such assemblies meet most of

the requirements previously laid down for the process con-

trol system central processor. These single board com-

puters are usually compatable with a bus made by the manu-

facturer. Additional components, such as A/D and D/A con-

verters, RAM memory, communications port controllers, etc.

are also offered by the manufacturer for use with the sin-

gle board computer and the bus.

Of the many hardware combinations possible, two

potential system configurations, based on the popular

Intel 8085 and Motorola 6800 microprocessors, respectively,

are shown in Table 1. C3, 93 The components listed are

board assemblies which directly plug into the

manuf ac terer ' s bus, Intel's Multibus or Motorola's EXORbus.

24

The Intel Floating Point Processor is an exception,

however. It plugs directly into a socket on the SBC 80/24

Single Board Computer. The Intel chassis provides slots,

power and bus for 8 cards; the Motorola chassis provides

for 10 cards.

Component Intel Motorola

Single Board
Computer SBC 80/24 M68MM01D

Memory Expansion
(16K Dynamic RAM) SBC 116A MEX6816-1

Second Serial Port (on SBC 116A) MEX6850

Floating Point
Processor SBX 331 M68MM14

A/D Converter SBC 711 M68MM15A

D/A Converter SBC 724 M68MM15CV

Chassis SBC 660 M68MMLC

Table 1. Hardware Configuration Alternatives

An important consideration in hardware selection is

the amount of logic development support available. The

Electrical Engineering Department of the University of

Washington has extensive facilities for developing and

testing Intel microprocessor systems. These include two

Intel MDS 800 Microcomputer Development Systems with emula-

25

tors for 8080, 8085 and 8086 microprocessor systems. As a

result of the availablity of these design tools, and the

familiarity with their use, the Intel system is the prefer-

able hardware choice. With this in mind Professor Ricker

contacted the Intel Corporation and requested assistance in

obtaining the Intel hardware components identified for this

process control system. Intel graciously donated all of

the components necessary, and also provided reference manu-

als to aid in implementing the design. The Chemical En-

gineering Department provided an ADM-3A video terminal for

use as the system terminal, along with necessary connec-

tions between the process control system and the process

equipment to be controlled.

HARDWARE DESCRIPTION

With the hardware components identified, a description

of how each operates, as well as its interaction with other

components is necessary to integrate the system design

Figure 5 presents a detailed block diagram of the system

hardware.

Multi
bus

*—?f

SBC 30/24

i i c r q processo r

R K ROM

4 K RAM £

) 8253 Timer

3251 A USART £

SBC 116A

< X I > 16 K RAM

3251A USART

SBC 711 ADC

SBC 724 DAC

Connec t-

i on
Panel

}| SBX 331
APU

£ PDP-11

Terminal

Phq si cal

Proc ess

Figure 5. Process Control System, Detailed Block Diagram

Proceeding in the same order as with the requirements,

the central processor will be covered first. In meeting

the requirements for the central processor) three compo-

nents are actually used: the single board computer* a mem-

ory and I/O expansion board and a math multimoduie. Each

will be covered separately.

A. SBC 90/24 Single Board Computer.

The SBC 80/24 single board computer is the heart oF

the system. It contains an 80S5A-2 microprocessor operat-

ing at 4. 84 MHZ, a serial port controlled by an 9251A

USART, six 8 bit parallel ports controlled by two 8255 pro-

grammable peripheral interface devices, an 8259A eight

channel programmable interrupt controller/ an 8253 pro-

grammable interval timer with three independent timers* 4'A

bytes of RAM memory* up to 32K bytes of ROM memory and bus

controller circuitry. The board also contains circuitry

for the addition of up to 2 special purpose SBX multimoduie

boards, such as the SBX 331 Arithmetic Processor Unit, to

the 80/24 board. Figure 6 provides a detailed block dia-

gram of the 80/24 board.

J6

iSBC 301

OPTIONAL
RAM

MODULE
Sh. 4

t --T---r—

82SSA
PERIPHERAL
INTERFACE

U16 Sh 5

82S5A
PERIPHERAL
INTERFACE

IMS Sh. 6

MULTIMODULE
INTERFACE

Sh 10

8259A
INTERRUPT
CONTROLLER
U17 Sh 19

M N

(I
I F
B A
U C
s E

Sh. 2

4K RAM
U64-67
Sh. 4

808SA-2
CPU

U36 Sh. 3

XCEIVER
U22 Sh. 9

XCEIVER
U49 Sh 4

4K-32K
ROM/PROM

US0-S3
Sh. 4

I00-IO7

82S3
INTERVAL
TIMER

U19 Sh. 7

PIO0-PIO7

8251A
SERIAL

INTERFACE
U20 Sh. 7

Figure 6. SBC 80/24 Single Board Computer, Block Diagram

(Intel iSBC 80/24 Single Board Computer
Hardware Reference Manual* p 4-1. >

Switches and jumpers on the board determine the port

numbers of on-board I/O ports and the starting addresses of

RAM and ROM memory blocks. The 80/24 board decodes all

references to memory and I/O ports. If the reference is to

an on—board asset/ the read or write operation is accom-

plished directly. If the reference is not recognized as

on-board* the processor uses the bus control circuitry to

gain control of the Intel Multibus; and initiate a read or

write operation onto the bus. When a device with the ad-

dress or port number referenced recognizes the operation is

for it; it acknowledges this and writes or reads data on

the bus as required.

For this application the RST 7.5 interrupt is enabled

on the board and is connected to the output of counter 1 of

the 8253 Programmable Interval Timer. The counter is con-

trollable from software to provide an interrupt driven real

time clock. The 8251A Universal Synchronous/Asynchronous

Receiver/Transmitter (USART) is used to provide an asyn-

chronous RS-232 port at 9600 baud for communication with

the PDP-11/60 computer. The S259A Programmable Interrupt

Controller and the two 8255A Programmable Parallel Inter-

face devices are not used in this application; but are a-

vailable for future enhancement of the system. C10D

B. SBC 116A Memory and I/O Expansion Board.

The SBC 116A memory and I/O expansion board provides

the bulk of the RAM memory that will be available for use

by the system software for storage of variable data. A

functional block diagram of the board is provided in Figure

7.

W > I OR IK « I

ROM 'F PROM
MEMORY
(SOCKETS)

RS232C
COMPA1ISIE
DEVICES

USER DESIGNATED PERIPHERALS

SELECTED
COMMUNICAT'ONS

FREQUENCY

I mi INTERRUPT

sz
INTERRUPT
REQUEST
LINES

INTERRUPT
REOUEST
LINES

«• PROGRAMMABLE
MO LINES

DRIVER/
TERMINATOR
INTERFACE

PROGRAMMABLE
COMMUNICATIONS

INTERFACE
IUSAATI

AOORESSBUS

iz v INTERRUPT
REOUEST
LINES

f\ INTERRUPT >*1

) STATUS/MASK (
1/ REGISTERS \j

CONTROL BUS

PROGRAMMABLE
PERIPHERAL
INTERFACE

INTERRUPTS ORIGINATING FROM THE PROGRAMMABLE COMMUNICATIONS INTERFACE
AND PROGRAMMABLE PERIPHERAL INTERFACE ARE JUMPER SELECTABLE

4K 8 BK ' 9

OR 16K 8
RAM MCMORY

30

SBC »0 \

j.

Figure 7. SBC 116A Expansion Board/ Block Diagra m

(Intel iSBC 104/108/116 Combination
Memory and I/O Expansion Board
Hardware Reference Manual, p 4-1.

)

The starting address of the RAM is set on the board to

immedidately follow the last address of RAM on the SBC

80/24 board, thus forming a contiguous 20 K-bytes of RAM.

This board also contains an 8251A USART which will be used

to provide the serial data port to the system terminal.

Jumpers on the board are set to operate this serial port at

9600 baud. The two 8255A Parallel Peripheral Interfaces on

the board are not used in this application. The board also

has capability for adding up to 8K of ROM memory to the

system/ which also will not be required. C11D

31

C. SBX 331 Fixed/Floating Point Math Mu 1

t

imodu 1 e Board.

The SBX 331 Fixed/Floating Point Math board uses an

S231A Arithmetic Processor Unit (APU) and is connected di-

rectly to the single board computer via an internal bus

structure. It is accessed as though it were a peripheral

device through an I/O port on the single board computer.

Floating point operands are output to the APU, then an op-

code is output to the APU instructing it which operation it

is to perform. Results are then read back from the port.

The APU is a stack oriented device, that is, the operands

are presented one at a time, followed by the operation to

be performed/ in much the same way as arithmetic operations

are performed on a Hewlett-Packard hand-held calculator.

In this application, the APU is polled and tested for com-

pletion of calculation vice using its interrupt capability.

The APU performs the following operations in hardware:

C8, 123

Conversion of 16 bit binary to 32 bit floating

point.

Conversion of 32 bit floating point to 16 bit

b inary

.

Floating point multiply, divide, add and sub-

tract.

Floating point sine, cosine, tangent and

31

o.

inverses.

Floating point square root, natural and common

logs and inverses.

16 and 32 bit integer multiply, divide, add and

sub tract.

D. SBC 711 Analog Input Board.

Ana 1 og-to — d i g i tal conversion is obtained through use

of the SBC 711 board. A block diagram of the SBC 711 ADC

is given in Figure 8. The SBC 711 can be commanded to con-

vert a single channel specified by software or to convert a

sequence of channels starting with the first and last chan-

nel specified by software. Completion of the task can be

signalled either by an interrupt or by polling the status

register. In addition to straight conversion, the board

provides software selectable gains of 1, 2, 4 and 8 which

are applied to all analog channels before conversion to bi-

nary. Conversion is initiated by setting the appropriate

channel number(s) in the channel register(s) and setting

the appropriate bits in the c ommand /status register.

33

n
mmji moiECTKiM

fpft

waual

] I 5 I

I aifur PHonctiOH

X"

J.

UOMU MCOMR
CMIML tOUC

..»_ le

("i""!"""!"!!^
I « i i « i r i

-H> o

~
|

*
l

~
o

fflOMfJ -

IKK ™» ,.«. x

-H>

-H>

in Tin ii

00*W
hiusifi

Figure 8. SBC 711 Analog Input Board; Block Diagram

(Intel iSBC 711 Analog Input Board
Hardware Reference Manual, p 4-3.4.

)

Communication with the board is accomplished through

memory mapped I/O. The board has a header which is wired

to establish a base address. The board then recognizes

memory references on the bus for that address and the sub-

sequent five addresses as being directed to the SBC 711.

The uses of the reserved addresses are as follows: C13D

1. Base + 0: Command/Status Register.

34

Base + 1: Channel Number and Gain Register.

For single channel conversions, the channel to

read is placed here. For conversion of a se-

quence of channels. the number of the first

channel is placed here, in the lower 5 bits.

The upper 2 bits select the gain of the con-

verter: 1, 2. 4 or 8 x the input.

Base + 2: Last Channel Register. Used to

identify the last channel number when a se-

quence of channels is to be converted.

Base + 3: Clear Interrupts. When using the

end of conversion interrupt feature, writing to

bits 4 and 5 in this address will clear inter-

rupts and reenable them for future conversions.

Base + 4: High Data Byte. When conversion of

a channel is complete, contains most signifi-

cant 8 bits of result.

Base + 5: Low Data Byte. When conversion com-

plete contains lowest 4 bits of 12 bit result,

left justified and filled with O's.

E. SBC 724 Analog Output Board.

Digital-to-analog conversion is obtained through use

of the SBC 724 board. This board contains 4 separate and

independent digital-to-analog converters <DACs). each of

35

which converts a 12 bit integer to a to +5 VDC output.

Figure 9 contains the block diagram of the SBC 724 board.

[hs. r{i r{i r£i r
H„;j£>~tomcmoouim I a I I o ' ' o '

XT |?J Lij Llj L
OCOC

CONVEHTER

INKS/

INR7/

^
FROM n
IAUI fwni

FROM PI

(MULTIIUSI

HIGH 'LOW

vm. i

DECODER

BASE

AOORESS
OECOOER

i
»0R3/-

•DRF/

0»C
E CLOCK

OECOOER

TRANSFER
ACKNOWLEDGE

LOGIC

1

A A A A
awaj

CLK

HOLD REGISTtR

«0H1

»0R2/

Lj :

TT > 3

D«!4i-

o»n/

T i

D«ro;

o«n/
OATOy-

0»T7/

OATO/-

D«T7/

Figure 9. SBC 724 Analog Output Board

(Intel iSBC 724 Analog Output Board
Hardware Reference Manual, p 4-2.

)

The SBC 724 board is also a memory mapped I/O device.

The board has a header which is wired to select a base ad-

dress. The board then recognizes that address and the sub-

sequent seven addresses when they appear on the bus as

references to the board. Each DAC is accessed by FIRST

writing the low byte to its lower byte address. THEN writ-

36

ing the high byte to its upper byte address. No commands

are necessary to start the conversion. The addresses of

the DAC ' s in terms of the base address are: C14D

1. Base +

2. Base + 1

3. Base +• n

4. Base + 3

5. Base + 4

6. Base +• 5

7. Base + 6

8. Base + 7

Lower byte, DAC (LS 4 bits)

Upper byte, DAC (MS S bits)

Lower byte, DAC 1

Upper byte, DAC 1

Lower byte, DAC 2

Upper byte, DAC 2

Lower byte, DAC 3

Upper byte, DAC 3

F. SBC 660 System Chassis.

The SBC 660 System Chassis provides an eight slot

cardcage and backplane for use with SBC single board com-

puters and expansion boards. It contains the power supply

for the system and dual cooling fans. The backplane pro-

vides the interconnections that make up the Intel Multibus

and distribute power to the boards. The backplane has been

jumpered to provide slot (2) with the highest priority in

obtaining control of the bus. The SBC 30/24 single board

computer is placed in this slot. This permits space for

the SBX 331 which is connected on top of the SBC 80/24

board. C15D

37

HARDWARE CONNECTION DATA

This section contains the table listings which identi-

fy the I/O port assignments/ memory address assignments*

connector pin assignments which are used to permit the

hardware components to operate together as a system. Table

2 identifies the I/O port assignments. In addition to

those functions being used in this application/ unused

functions which have hardwired dedicated port assignments

are also listed to show those ports as unavailable for

other use.

38

I/O Port

BO to B3

B4 to B7
B8 to BB

BC
BD

CO to CF

D8 to DB

DC
DD
DE
DF

E4 to E7
E8 to EB

EC
ED

I/O port

I/O port

Location

SBC 80/24

SBC 116A
SBC 116A

SBC 116A
SBC 116A

SBC 80/24

SBC 80/24

SBC 80/24
SBC 80/24
SBC 80/24
SBC 80/24

SBC 80/24
SBC 80/24

SBC 80/24
SBC 80/24

Function

External Interrupt Expansion
(not used

)

PPI Number 3 (not used)
PPI Number 4 (not used)

System Terminal Data Port
System terminal Control Port

SBX 331 APU

External Interrupts (not used)

Timer
Timer 1 (Real Time Clock)
Timer 2 (Port EC ED baud rate)
Timer Control Register

PPI Number 1 (not used)
PPI Number 2 (not used)

PDP-11 Link Data Port
PDP-11 Link Control Port

numbers are hexadecimal,

address space is from 00 to FF.

Table 2. Input/Output Port Assignments

Table 3 lists the assignments of RAM and ROM memory

addresses which the system will be using.

39

Address Assignment

0000 ROM start, System Software

2FFF ROM max end

3000 RAM start

3FFF last RAM on 80/24

4000 first RAM on 116A

7FFF RAM end on 116A

8000 TO F6FF Unused

F700 to F705 SBC 711 ADC

F708 to F70F SBC 724 DAC

F710 to FFFF Unused

Memory Addresses are hexadecimal.

Memory Address space is from 0000 to FFFF.

Table 3. Process Control System, Address Assignments

Table 4 lists the individual signals entering the sys-

tem from the physical process and their connector pin as-

signments. The signals are received via two-conductor

pairs. The signal itself is labeled "In" and the analog

return or ground for the signal is labeled "Ret" in Table

4. Signals coming into the process control system are re-

ceived at the system connection panel at BNC coaxial con-

nectors SOO through S15. They are transferred directly

from the connection panel via flat ribbon cable to connec-

40

tor J2 on the SBC 711 Analog Input Board. Table 5 lists

the output signals from the system to the process under

control and their connections. As with the analog inputs*

each output is carried via two conductors. In Table 5, the

signal is labeled "Out" and its analog return is labeled

"Ret. " Outputs from the system originate at connector Jl on

SBC 724 Analog Output Board and are transferred via flat

ribbon cable to BNC coaxial connectors COO through C03 on

the system connection panel. Figure 10 shows the system

connection panel coaxial connectors.

The connection to the system terminal is from card

edge connector J3 on the SBC 116A Memory and I/O Expansion

board via flat ribbon cable to the female RS-232 connector

on the rear of the chassis labeled "terminal. " The connec-

tion to the PDP-11/60 computer is from card edge connector

J3 on the SBC 80/24 Single Board Computer via flat ribbon

cable to the female RS-232 connector on the rear of the

chassis labeled "PDP-11. "

41

Signal In SBC 711 J3 Pin BNC Connector

CH In 4 soo
CH Ret 3
CH 1 In 8 soi
CH 1 Ret 7
CH 2 In 12 S02
CH 2 Ret 11

CH 3 In 16 SOS
CH 3 Ret 15
CH 4 In 20 S04
CH 4 Ret 19
CH 5 In 24 SOS
CH 5 Ret 23
CH 6 In 28 S06
CH 6 Ret 27
CH 7 In 32 S07
CH 7 Ret 31
CH 8 In 6 S08
CH 8 Ret 5

CH 9 In 10 S09
CH 9 Ret 9
CH 1C I In 14 S10
CH 1C I Ret 13
CH 11 In 18 Sll
CH 11 Ret 17
CH 12 ! In 22 S12
CH 12 : Ret 21
CH 12 ! In 26 S13
CH 13 1 Ret 25
CH 14 In 30 S14
CH 14 • Ret 29
CH IS i In 34 S15
CH IS i Ret 33

Table 4. Process Control System* Input Connections

42

Signal Out SBC 724 Jl Pin BNC Connector

CH Out 42

CH Ret 45

CH 1 Out 36

CH 1 Ret 39

CH 2 Out 30

CH 2 Ret 33

CH 3 Out 24

CH 3 Ret 27

COO

C01

co;

C03

Table 5. Process Control System, Output Connections

43

Sensor Input Channels From Process00000000
S00 S07

SOS S15

Control Output Channels to Process

COO C03

To SBC 711

From SBC 724

Jl I

= Coaxial Connector.

Figure 10. System Connection Panel

Chapter 4

SOFTWARE DESIGN

INTRODUCTION

The process control system software is designed to be

a modular, hierarchial, table driven real time program.

The system software acts as its own operating system and

functions as a self-contained stand alone program. The

software interacts with the user through a video terminal,

with the physical process through addressable A/D and D/A

conversion boards and with a PDP-11/60 computer through an

RS-232 serial port. The software is resident in Read Only

Memory and begins execution immediately upon providing

power to the system.

A User's Manual for the process control system is pro-

vided in Appendix A.

SOFTWARE ORGANIZATION

The software is organized into 4 levels. The highest

level contains the system executive routine which initial-

izes the system and controls execution of system commands.

The system commands are short mnemonic expressions which

the user enters from the system terminal to inform the ex-

ecutive which system operating mode the user desires. The

next highest level in the hierarchy contains the system

45

routines* each of which implements a system operating mode.

The third level of routines contains function routines

which perform specific major tasks peculiar to an operating

mode. As an example, in the file creation mode there is a

function routine* LDBLCK, which performs the steps required

to enter and check all information neccessary to specify

one block in the configuration. The last level in the hi-

erarchy contains the subroutines which provide the bulk of

the actual instruction execution. Subroutines are public

and may be called by routines at any level.

The relationship of the executive routine, named

PCSEXC, and the three systems routines, named PCSCFG,

PCSRUN and PCSPDP, are shown graphically in Figure 11.

PCSCFG enables creating and editing system configuration

files. PCSRUN enables executing a configuration file as a

real time control program. PCSPDP enables the user to com-

municate directly with the PDP-11/60 computer from the

process control system video terminal.

46

PCSEXC

-

PCSCFG PCBRUN PCSPDP
1

Figure 11. Software Organization. System Routines

Before describing the various routines in detail* a

discussion of the data structures which they use is needed.

Two primary structures av& employed by the system software.

The first is the configuration file. This file contains

all of the information needed to describe the configuration

of the desired process control system. The file is organ-

ized as an indexed sequential file of fixed record length.

The file is also structured as a text file, that is, each

record is one line of characters and is terminated with a

carriage return character. This organization was chosen

over pure sequential and random access structure to mini-

mize file handling overhead and still provide reasonably

fast access to records. Table 6 demonstrates the file

structure.

Index Record Description

CFNAME Configuration file name/ 32 characters

DFNAME Data file Name. 32 characters

PRDREC Sampling period, B characters

BLKCTR Number of blocks in configuration

TREC 32 Block type records, each S ch.

XREC 32 Block X input records, each 8 ch.

YREC 32 Block Y input records, each 8 ch.

GREC 32 Block gain records, each 8 ch.

OREC 32 Block output constant option records

VREC 32 Block output constant value records

RREC 32 Block reset records, each 8 ch.

DREC 32 Block rate records, each 8 ch.

OUTCTR Number of configuration output channels

OUTREC 4 Output channel records, each 8 ch.

DATCTR Number of data points in configuration

DATREC 6 Data point records, each 8 ch.

ENDREC Zero byte end of file record

Table 6. Configuration File Structure

The second principal data structure consists of the

run time tables. These are the tables used by the system

to implement the desired control strategy. Prior to exe—

48

cuting the control operation, the system translates the

configuration file information to floating point numbers,

internal addresses and flags which are stored in a series

of tables. Then, during the running of the control opera-

tion, the software refers to the tables to determine what

actions it must take. Table 7 illustrates the organization

of these tables.

Table Contents

TTBL 32 Block type codes, each 1 byte

XTBL 32 Block X input addresses

YTBL 32 Block Y input addresses

KTBL 32 Block X or Y constants, each 4 bytes

GTBL 32 Block gains, each 4 bytes

OTBL 32 Block output flags, each 1 byte

VTBL 32 Block output constants, each 4 bytes

RTBL 32 Block reset constants, each 4 bytes

DTBL 32 Block rate constants, each 4 bytes

LTBL 32 Block previous inputs, each 4 bytes

CTBL 4 Output channel addresses

PTBL 6 Data point addresses

Table 7. Run Time Tables

49

The organization of the system routines will be han-

dled individually to show the relationships of the function

routines each uses to implement its respective system

operating mode.

The first system routine, PCSCFG, implements two com-

mands, FILE and MOD, to permit both creating and modifying

a configuration file. The executive passes a flag, named

Edit, to signal which command the routine is to execute.

PCSCFG uses 5 function routines to load configuration data

into the file. These routines are LDNAME, LDPERD, LDBLCK,

LDOUT and LDDATA. They input, check and store the informa-

tion for file name, sample period, block definition, output

channel definition and data point definition, respectively.

Their relationship is shown in Figure 12.

PCSCFG

LDNAME LDPERD

LDBLCK

•

LDQUT LDDATA
— >

Figure 12. Software Organization, Configuration Functions

50

PCSRUN implements the RUN command. It takes the in-

formation describing the process control con-figuration from

the file* converts it to table entries and executes its

real time control program. PCSRUN is organized into two

priority levels of routines. The lower level consists of

two functions* LDTABL, which does the conversion and stor-

ing of table entries and MODTBL, which communicates with

the user to enable modifying the values of constants in the

tables. The higher priority level consists of the function

routines which are a part of the interrupt service routine/

ISR. These consist of INPUT, BLOCK, OUTPUT, DATA and

DSPLAY. When a timing interrupt is received from the

hardware, the low priority function MODTBL is suspended and

ISR immediately begins execution. When it has completed

its tasks, it returns execution to MODTBL which resumes at

the point where it was interrupted. The ISR functions form

the real time control program, and involve sampling the

process sensors, servicing the functional blocks.- deliver-

ing control output signals to the process, sending process

data to the PDP-11 computer and displaying the process data

on the system terminal. The relationship of PCSRUN and its

routines are shown in Figure 13.

51

PCSRUN

LDTABL MODTBL

a. Low Priority Function 1

PCSRUN

ISR

INPUT BLOCK

OUT PUT DATA DSPLAY

b. High Priority Functions

Figure 13. Software Organization/ Run Functions

PCSPDP implements the system command PDP to enable two

way communication between the user and the PDP-11/60 com-

puter. It passes each character received from one to the

other. In addition, the user may instruct the PDP-11 to

run a program resident with its system, called $PCS, which

mill enable direct exchange of configuration files and data

between the process control system and the PDP-11. These

tasks ars relatively simple and have been accomplished with

several subroutines. Since no function routines were re-

quired, no organizational chart is presented here.

More detailed discussion of these routines is contain-

ed in the next section.

SOFTWARE DESCRIPTION

A number of points concerning the software routines in

general need to be made before describing any of them in

particular. Because of the nature of the application, a

stand alone real time process controller, and also due to

the logic development tools available, assembly language

was chosen as the language in which all routines were writ-

ten. Without an existing operating system to handle the

variable assignments, fixed hardware addresses and I/O

channels, assembly language drivers would be required for

much of the I/O features, even if other portions could be

written in a high level language. Secondly, to use the

timing functions available in the hardware, assembly

language routines are required to implement much of the

53

real time application. And finally* most assembly language

drivers were already available for use with the hardware

floating point processor. Very little remained that could

effectively be written in a high level language.

To make the assembly language routines as understand-

able as possible* they are generally very short and have a

name that comes as close as 6 characters permit to describ-

ing the task they perform. In addition, several conven-

tions are employed to make it easier to understand the op-

eration of the routine and to facilitate later modifica-

tions to the software.

In particular* parameter passing between routines is

standardized. Parameter passing is done primarily at the

subroutine level where actual data or addresses are manipu-

lated. When a data byte is passed to a called subroutine*

it is passed in the C register. When a data byte is re-

turned to the calling routine it is returned in the A reg-

ister. When an address or a 2 byte data value is passed,

in either direction, it is passed in the H, L register pair.

If a second address or 2 byte value is passed at the same

time* it is placed in the D, E register pair. For example*

the subroutine POINT is used frequently to locate a specif-

ic entry in the configuration file or in a run time table.

It is given the start address of a group of records or a

table in H * L , the address of a counter to use for countinq

54

up to the location of the entry in D, E and the length of

the records or entries it is counting in C. PQIIMT returns

the address which points to the desired record or table

entry in Hi L. Most subroutines* however* only pass 1 pa-

rameter.

Routines that operate on a file record or a global

variable return a "Good/No Good" parameter to inform the

calling routine that it was or was not successful in per-

forming its task. The calling routine tests this condition

and acts accordingly. The convention used sets the A reg-

ister equal to zero if successful and sets A not equal to

zero if unsuccessful. This is used extensively in the rou-

tines handling configuration file information.

A. The Executive System Routine PCSEXC

The system executive initializes the software and

hardware when the power is first applied. It then displays

the system menu. The system menu as seen by the user is

shown in Figure 14.

55

PCS VI. 1

PLEASE ENTER SYSTEM COMMAND DESIRED, FOLLOWED BY <CRI

FILE CREATE PROCESS CONTROL CONFIGURATION FILE

MOD MODIFY CURRENTLY DEFINED CONFIGURATION FILE

PDP ACCESS PDP-11/60 AS A REMOTE TERMINAL

RUN RUN CONFIGURATION FILE AS A REAL TIME PROGRAM

EXIT STOP FUNCTION AND RETURN TO HERE

Figure 14. System Menu

The system commands displayed are used by the system

to accomplish the modes of operation of the system. With

the system menu displayed, the executive waits for an input

from the user. When a line of input is received, the exec-

utive examines it and if it contains a legal system com-

mand the executive transfers execution to the system rou-

tine designed to provide the mode of operation desired. In

the case FILE or MOD is entered, PCSEXC clears or sets the

Edit flag, respectively, prior to calling PCSCFG. When

each system routine completes its operation it returns con-

trol to the executive which then restores the system menu

to the display and waits for another command input.

30

PCSEXC calls the following system routines:

1. PCSCFG: With Edit flag clear, implements FILE

command. Cleans out configuration file buffer,

outputs questions and prompts to guide user,

and inputs user selections to create new file.

With Edit flag set, implements MOD command.

Enables user to modify contents of configura-

tion file currently in file buffer

2. PCSRUN: Implements RUN command. Enables run-

ning a configuration currently contained in the

file buffer as a real time process control pro-

gram. Enables user to change values of set

points, block gains, PID reset and rate, and to

remove or add constant output feature to blocks

while program is running

3. PCSPDP: Implements PDP command. Enables user

to communicate directly with PDP-11 computer.

System terminal becomes a remote terminal of

PDP-11 system.

PCSEXC uses the following subroutines to set up the

serial ports, to display information on the system terminal

and to receive input from the user:

1. IUSART: Initializes the serial port control-

57

ers (S251A USARTS) for the system terminal and

the PDP-11 link.

2. INLINE: Inputs one line of characters from the

terminal. Provides correction capability using

the Shift/Rubout keys. The maximum number of

characters input is 79. A carriage return

<CR>» a line feed <LF> or an escape <ESC> will

be accepted as an end of line character.

3. DECODE: Examines a line of input for system

command. If one is found* the first character

of the command is returned.

4. QUTMSG: Displays a message on the system ter-

minal.

5. CLRCRT: Clears the system terminal display.

B. Configuration File System Routine PCSCFG

The configuration file system routine* PCSCFG* accom-

plishes two modes of operation* creating a configuration

file* and modifying a configuration file. One routine was

selected rather than two to minimize the duplication in

overhead keeping track of position counters and condition

flags. The difference in the two modes rests primarily on

the fact that in the modify mode the user has the option of

either inputting new elements in the configuration descrip-

tion or accepting the current elements. To accomplish

38

this, the routine tests a flag; called Edit* at each input.

If the flag is set, the old information is retrieved from

the file and displayed. A carriage return is accepted as

indication that the old is to be retained. If new input is

provided by the user it is checked and placed in the file*

overwriting the old information.

The configuration file is created, or modified, in

sections. The sections are:

Configuration File Name Definition: Optional.

User may provide 32 character maximum name to

identify configuration.

Data File Name Definition: Optional. User may

provide 32 character maximum name to identify

file where he intends to store run time data.

Sampling Period Definition: User selects peri-

od between control system updates.

Block Definitions: User defines inputs and

parameters for each block to be used in config-

uration. System presents blocks sequentially

for definition, starting with the first block,

D00, until either the configuration is complete

or the last block, B31 has been used.

Output Channel Definitions: User selects the

points in configuration to connect to output

59

channels as control signals for process.

System presents channels sequentially for def-

inition, starting with COO, and ending either

when all channels needed have been defined or

the last channel. C03 has been used.

6. Data Point Definitions: User selects points in

configuration to sample and save as data each

period. System presents data points sequen-

tially, starting with point DOO and ending when

either all points required have been defined or

the last point. D05. has been used.

The block definition section is fairly involved since

for each block a number of parameters as well as the block

inputs are needed to fully define the block. PCSCFG uses a

routine called LDBLCK to handle the questions, answers,

checks and storage tasks required to define a single block.

An example of the system terminal display seen by the user

during definition of a block is shown in Figure 15.

Entries typed by the user are shown in parentheses. In the

example, the user has decided to add a constant, such as an

offset, to a sensor input from the process and pass the sum

on with unity gain. He has not selected the forced con-

stant output, or manual condition, for this block.

ou

FUNCTIONAL BLOCK DEFINITION, MAXIMUM 32 BLOCKS
WHEN NO MORE BLOCKS DESIRED, ENTER <ESC> FOR TYPE
BLOCK NUMBER = BOO
TYPE? ADD, SUB, MUL, DIV, SQT, SCL OR PID <CR>
*<ADD <ICR>)
X INPUT? S00-S15, B00-B31 OR MAX 5 DIGIT CONSTANT <CR>
*<S05 <CR>)
Y INPUT? SOO-S15, B00-B31 OR MAX 5 DIGIT CONSTANT <CR>
*(0. 25 <CR>>
GAIN? MAX 5 DIGIT CONSTANT <CR>
*(1 <CR>)
CONSTANT OUTPUT? YES OR NO <CR>
*<NO <CR>)

User input is shown in (>.

Figure 15. Configuration File Routine, Defining a Block

When all of the blocks needed have been defined the

user enters an escape character <ESC> instead of a type se-

lection. The system responds by initiating the next sec-

tion.

The fourth section, defining the system output chan-

nels invloves asking the user to name the point within the

configuration he desires to be output to the process

through the particular channel. An example of an output

channel definition is aiven in Figure 16.

ol

OUTPUT CHANNEL DEFINITION, MAXIMUM 4 CHANNELS
WHEN NO MORE CHANNELS DESIRED, ENTER <ESC>

OUTPUT COO=? INPUT SOO-S15 OR BLOCK B00-B31 <CR>
*<BOO <CR>)

OUTPUT C01=? INPUT SOO-S15 OR BLOCK B00-B31 <CR>
*(<ESC>>

User input is shown in ().

Figure 16. Configuration File Routine, Defining an Output

The fifth section, defining data points, is virtually

identical to the previous section.

After definition of the data points, the configuration

file is complete. The system displays a summary of the

file to enable the user to review it prior to exiting from

the mode. To exit, the user enters the "EXIT" system com-

mand which returns control to the executive.

In modifying a configuration file, the routine follows

the same steps as in creating the file. There are two

differences, however. First, after every question display-

ed by the system, the answer currently in the file is also

displayed. Secondly, the routine will now accept several

skip codes to facilitate reaching the file entries to

change. The skip codes used are:

1. <CR>: The answer displayed is to be retained,

skip to the next question.

2. <LF>: The line feed skips to the next block*

leaving all remaining elements of the current

block definition intact.

3. <ESC>: The escape character skips to the next

section. All remaining elements in the current

section are left intact.

If, when modifying a file* more blocks output channels

or data points are desired than originally specified,

PCSCFG automatically shifts into File Mode for that sec-

tion. New blocks* channels or points are added, starting

with the number next in line after the last one currently

used in the file.

The function routines that PCSCFG calls are:

1. LDNAME: Inputs name, if provided, checks for

32 character maximum length and places in file.

PCSCFG instructs routine which record, CFNAME

or DFNAME, is to receive the name.

2. LDPERD: Inputs sample period and checks for

0. 1 and 10.0 limits. Stores in file record

PRDREC.

3. LDBLCK: Inputs, checks and stores each parame-

ter needed toe omp

1

etel y specify a block. File

record BLKCTR is updated for each block entered

to enable the routine to keep track of block

number. Block type, X and Y inputs, gain, out-

put constant option and when needed, PID param-

eters reset and rate, are stored in file re-

cords.

4. LDOUT: Inputs, checks and stores in file re-

cords, starting at index OUTREC, the name of

the signal to send out on each channel. The

file record OUTCTR is updated as each channel

is defined to keep track of the channels used.

5. LDDATA: Inputs, checks and stores in file re-

cords, starting at index DATREC, the name of

the point in the configuration desired to be

saved as data and displayed. The file record

DATCTR is updated with each point definition to

keep track of the points used.

C. Run Configuration System Routine PCSRUN

The system routine PCSRUN accomplishes the Run Mode of

the process control system. It handles the conversion of

configuration file records describing the desired control

system to entries in the run time tables which will be used

to actually control the physical process. When the tables

64

have been loaded* the routine opens communication with the

user* requesting a start command. The user starts execu-

tion of the real time program by entering the command "GO"

followed by <CR>. When directed to start, PCSRUN enables

the 1 msec timing interrupts and waits for further input

from the user.

While the process control program is running* the user

may change the values of constants used in the configura-

tion. Specifically* the user can change the gain of any

block* the reset and rate of any PID block* the value of

any set point given as the input to a block and he can

change any block from the output held constant condition to

the calculated output condition or the reverse. Changes

are accomplished by entering the block number. The routine

then asks for the parameter to be identified and then for

the new value. After each change is made* the routine is

ready to make another. The change is effected on the next

timing interrupt. The execution of the control program may

be stopped at any time by entering the command "HALT" fol-

lowed by <CR>. The program may be then be resumed by

entering "GO" or the mode may be exited by entering the

system command "EXIT.

"

An example of the system terminal display during exe-

cution of a real time program is shown in Figure 17.

65

RUN PROCESS CONTROL CONFIGURATION
TIME 02: 37

DOO = 3. 3234
D01 = -. 00005
D02 = 1. 0000

ENTER HALT <CR> TO STOP
ENTER BLOCK NUMBER <CR> TO CHANGE BLOCK

Figure 17. Run Configuration Routine. Real Time Display

The control of the process is accomplished by the in-

terrupt service routine; ISR. ISR initiates execution upon

receipt of each 1 msec timing interrupt from the hardware

counter. ISR counts occurrances of the interrupts with two

counters. DCNTR and PCNTR. PCNTR counts up to the value of

the sampling period; in msec; to signal the need to update

the process control action. DCNTR counts up to 1 second;

signalling the need to refresh the real time display. If

neither counter has reached its final value upon counting

the current interrupt; ISR returns without further action

ISR saves the status of all hardware registers and flags to

preserve the integrity of the task interrupted and to make

ISR reentrant.

When PCNTR equals the period; ISR scans ail 16 system

input channels and stores floating point representations of

oo

the 16 voltages read in the input table STDL. It then per-

forms the block calculations required/ starting with block

BOO and continuing until the last block specified in the

configuration file. ISR then connects the requested system

channel inputs and /or block outputs to the system output

channels. Any unused channels are forced to be zero volts

DC. If a data file had been opened prior to entering the

Run Mode^ ISR would send ASCII character representations of

the data points requested to the PDP-11 computer file

Qtherise, ISR returns.

When PCNTR equals 1 second, ISR updates the real time

display, incrementing the run time and replacing the data

point values with their current values. ISR then returns.

To accomplish these tasks, PCSRUN calls the following

function routines:

1. LDTADL: Clears all tables, fetches and con-

verts record data from the configuration file

and stores it in run time tables. Three letter

block types are made 1 byte hex numbers, Sxx

and Bxx symbols are made absolute addresses and

constant strings are made 4 byte floating point

numbers.

2. MODTEL: Inputs and decodes block number, pa-

ameter code and new parameter value. Enters

67

new parameter value in table. Displays prompts

to aid in making changes.

PCSRUN calls the following function routines through

the interrupt service routine ISR:

1. INPUT: Scans all 16 analog system input chan-

nels, stores 2 byte integer values in the input

buffer ADCBUF. converts the integers to float-

ing point representation. scales them from

millivolts (value of LSB) to yolts and stores

the final values in the input table. STBL.

2. BLOCK: Fetches each block type code. calls a

routine to perform the appropriate operation

and places the result in the block output

table. BTBL. It then checks the output con-

stant table. OTBL. to determine if the flag for

that block is set. If it is. BLOCK overwrites

the value just entered with the desired con-

stant output value from table VTBL. BLOCK ser-

vices the blocks sequentially and returns after

completing the last block specified in the con-

fig urat i on file.

3. OUTPUT: Fetches a floating point value pointed

to by the absolute address in the output chan—

63

nel table; CTBL. It converts the value to a 12

bit integer left justified in 2 bytes and sends

the two byte value to the output channel digi-

tal-to-analog converter. All four system out-

put channels are serviced. LDTABL initializes

CTBL with the address of floating point zero*

FZERO* in all four entries. The channels spec-

ified in the configuration file have this ad-

dress overwritten with the absolute address of

the signal desired by the user.

4. DATA: Fetches a floating point value pointed

to by absolute address in data point table*

PTBL. It converts this number to a 5 digit

ASCII string with sign and decimal point. This

value is sent to the PDP-11 computer with a

trailing space character. Each specified data

point is sent sequentially until the table is

exhausted. After the last point, a <CR> is

sent to signal the end of a sample period.

5. DSPLAY: Updates the real time clock and dis-

plays the new time* in minutes and seconds* on

the terminal. DSPLAY also displays the current

values of the data points on the terminal* one

per line* next to the data point symbol Dxx.

O/

D. Remote Terminal System Routine PCSPDP

The remote terminal system routine* PCSPDP* performs

the Terminal Mode of Operation. This mode is selected by

the system command PDP. In this mode* PCSPDP polls the two

serial port controllers (8251A USARTS) looking for the

status bit RX RDY set* indicating that a character has been

received on the port. The character is read from the ac-

tive port* examined, and if not an CESO* transmitted out

the other port. An <ESC> received from the system terminal

signals the end of the Terminal Mode session. The char-

acter is not transmitted and PCSPDP returns control to the

executive. An <ESC> received from the PDP-11 signals the

process control system that the previous character from the

PDP-11 was a protocol character. The previous character is

removed from the display* since it was not intended for the

user* and is decoded. PCSPDP then performs the data

transfer action required by the protocol character. These

are simple tasks and are performed by subroutines called

directly by PCSPDP The protocol characters used between

the two computers strictly involve file and data transfers

related to the process control system. They are listed

here for reference:

1. C <ESC>: Send configuration file from PCS mem-

ory to the PDP-11. This character is sent by

70

the PDP-11.

D --.ESO: Data file has been opened on PDP-11

system for input. PCS may now send data to

PDP-11. This character is sent by PDP-11. It

results in DFOPEN flag being set for use by

PCSRUN.

G <ESC>: Configuration file follows immediate-

ly from PDP-11. This character is sent by

PDP-11. It results in the down loading of a

configuration file into the PCS configuration

file buffer.

H <ESC>: Data file follows immediately from

PDP-11. The PDP-11 sends this character. The

process control system displays the data on the

terminal but does not store it in memory.

E <ESC>: This is end of transmission. This

character is sent by either computer immediate-

ly following the end of a file being trans-

ferred. In the Run Mode> this character is

sent when the mode is exited. Upon receipt of

this character from the process control system*

the PDP-11 closes its file for input. When the

PCS receives this character it returns to pol-

ling the port controllers.

71

PROGRAM LISTING

Copies of the process control system program listings

may be obtained from Professor William E. Moritz, Depart-

ment of Electrical Engineering, University of Washington.

Appendix B contains the process control system memory

map/ showing the memory allocations to program segments and

data structures.

Chapter 5

CONCLUSIONS

SYSTEM TESTING

The process control system was tested by simulation.

The Configuration Mode and Modify Mode were tested by

entering and revising typical configuration files similar

to those expected to be used with the system. In addition,

arbitrary entries for files using the full 32 blocks avail-

able were successfully entered and changed. Incorrect en-

tries for block types, inputs* gains, etc. were attempted

and were succesfully caught by the system.

The Terminal Mode was tested by simulating the PDP-11

computer with a second terminal. Characters and protocol

characters were correctly passed in each direction. The

processer correctly identified the actions required by

the protocol characters and successfully transferred files.

The Run Mode was tested by creating a simple configu-

ration file to perform a single block operaton. The block

type and parameters were varied and the control signal sent

out was compared to a predicted value. A variable voltage

power supply was used to provide the simulated sensor

input. For the PID block type, a constant error was given

a block operating as a PI controller. Because of the in-

tegral control action the block output for a constant input

73

is a linear ramp. This condition mas obtained. A second

block was added* defined as a PID block/ operating to give

PD type control. The ramp output of the first was used as

input to the second. The derivative action of the second

block provides a constant output For the ramp input. This

condition was also obtained. These tests were all run in

real time at a sample rate of 1 second. The system was

also run at the limits of 0. 1 and 10. seconds.- and demon-

strated that it did perform with these sampling periods.

ADVANTAGES OF THE SYSTEM

The system testing pointed out that a block diagram of

a control strategy for a given physical process could be

quickly and easily entered into the process control system

configuration file. Most changes to the file were also

easy to make. The editing feature available during the Run

Mode is also a significant advantage. This permits "manu-

al" control of all constant values such as set points.-

gains and PID reset and rate while the process is being

control 1 ed

The system is "user-friendly. " The menus of choices

offered for the selection of operating modes and for the

definition of elements of the control strategy relieve the

user from continually referring to a manual. The ques-

tions/ answers and error messaqes ars all in English. To

74

help maintain the friendly atmosphere the rubout key is en-

abled so the user can correct typographical errors before

the system sees the input. If an incorrect entry should be

made, the system asks politely that the information be

reentered

The process control system is very versatile. It

offers the basic PID control algorithm with extensive vari-

ation permitted by the use of the mathematical functions

also offered. As a result, very complex control strategies

can be realized through interconnection of up to 32 blocks

in any combination of the 7 possible block types. For ex-

ample, cascade control, where the process is controlled by

several controllers in series, with the output of each be-

coming the setpoint of the next, can easily be provided by

the system, up to a maximum of 16 controllers. In addi-

tion, with 4 separate output channels, up to 4 independent

processes may be controlled simultaneously, although the

same sampling rate must be used for all of them.

A feature common to many larger systems, but not gen-

erally available to small systems such as this one is data

storage. The process control system can sample and store

up to six variables in the control strategy each sampling

period. This feature is particularly important in the use

of the system in the Chemical Engineering Department to an-

alyze the transient response of a control strategy. The

/ D

action of the controlled variable as a function of time

needs to be stored to permit plotting and numerical anal-

ysis.

DISADVANTAGES OF THE PROCESS CONTROL SYSTEM

The system has limited file handling capabilities. It

is therefore forced to deal with fixed length records and a

fixed length configuration file. While the fixed length

indexed sequential file type permits easy modification of

the software to increase or decrease the number of blocks

or system channels* such a change cannot be accomplished

on-line. While this has little effect on the operation of

the system/ it results in one awkward situation for the

user. If, in modifying a configuration) the user decides a

block is no longer needed. he "removes" the block by no

longer using the output of the block in the control strate-

gy. The block remains in the file* but is not used. The

system has no means of file compression to actually remove

the block and move blocks forward in the file.- filling the

hole and making the necessary revisions of block numbers

throughout the configuration file.

Symbols are very limited within the system. The sys-

tem has defined the 16 input channels as SOO through S15>

the output channels as COO through C03, the 31 blocks as

BOO through B31 and the 6 data points as DCO through DCS.

While they serve to identify the various elements and are

not foreign to engineers with some exposure to computer

languages such as Fortran and Basic* they do not convey as

much information about the process being controlled as user

defined sysmbols.

Not all possible control algorithms are obtainable

with the system. In particular* the dead-time control al-

gorithm, which delays the control output signal an amount

of time from when the sensor input was read.- has not been

implemented here* although the system is certainly capable

of providing it.

POTENTIAL IMPROVEMENTS

The addition of more block types would further en-

hance the versatility of the system. The most return would

be realized by addition of a block providing a dead -time or

lead-lag algorithm. A dead-time control algorithm would

require an extensive amount of memory to implement a circu-

lar buffer to store the sequence of inputs to the block.

Consideration should be given to either limiting the number

of possible dead-time blocks the system could provide or

else defining the time delay in terms of sample periods

rather than total time. To illustrate the need For this..

at a 0. i second sampling period* a 2 minute delay would re-

quire a 4K-byte circular buffer* 207. of the total avail-

able RAM. The same delay at a 10. second sampling peri-

od would require only 48 bytes of storage. By limiting the

block to providing a maximum delay of 100 sample periods., a

buffer of 400 bytes could be used and as many as 10

dead — time blocks could be used in a given configuration

In this manner, long delays would be available, but would

require use of long sampling periods. Likewise, very short-

delays would require use of short sampling periods.

The addition of a mass storage device, such as a flop-

py disk system, would simplify creating and storing several

control strategies for evaluation. Also, limitations on

memory size, as mentioned above, could be removed by using

the disk as virtual memory. Review of data collected could

be done immedidately upon completion of an experiment,

using the system terminal for data display.

One final, and extensive improvement, could be made to

the process control system by the addition of a real time

operating system. The process control system could then

run as a real time application program under the operating

system and use the operating system's file handling a no

other utility routines to remove the current limitations in

file hand ling.

LIST OF REFERENCES

1. Shinskey, F. G. , "Process-Control Systems." McGraw-
Hill, 1967.

2. Luyben, W. L. , "Process Modeling, Simulation and Con-
trol for Chemical Engineers." McGraw-Hi 1 1 , 1973.

3. "Linear Databook. " National Semiconductor Company..
19S0.

4. Lapidus, Gerald, "Minicomputers—What All the Noise Is
About. " Control Engineering, September, 196S, pp.
73-80.

5. Kompass, E. J. , "A Survey of On-Line Control Computer
Systems. " Control Engineering, January, 1972, pp.
52-56.

6. Andreiev, N. , "Programmable Logic Controllers—An Up-
date. " Control Engineering, September, 1972, pp.
45-47.

7. Kompass, E. J. and Morris, H. M. , "Comparing the Re-
lative Complexities of Programming Process Control-
lers. " Control Engineering, July, 1981, pp. 75-78.

8. "Systems Data Catalog. " Intel Corporation, 1981.

9. "The Complete Motorola Microcomputer Data Library. " Mo-
torola, Inc. , 1978.

10. "iSBC 80/24 Single Board Computer Hardware Reference
Manual. " Intel Corporation, 1981.

11. "iSBC 104/108/116 Combination Memory and I/O Expansion
Board Hardware Reference Manual. " Intel Corporation,
1979.

12. "Am9511A Arithmetic Processor" Product Note, Advanced
Micro Devices, 1979.

13. "iSBC 711 Analog Input Board Hardware Reference Manu-
al. " Intel Corporation, 1977.

14. "iSBC 724 Analog Output Board Hardware Reference Manu-
al. " Intel Corporation, 1980.

79

15. "iSBC 660 System Chassis
Intel Corporation. 1980.

Hardware Reference Manual

Append i x A

MICROCOMPUTER BASED PROCESS CONTROL SYSTEM

USER'S MANUAL

By Frank J. Nelson

August 18, 19S2

INTRODUCTION

The process control system provides a means for easily
de-fining, modifying and executing real time process control
for a physical process. The system consists of a microcom-
puter, a video terminal, a 16 channel A/'D converter, a 4
channel D/A converter, a panel for connecting the system to
the process and the software which configures the system to
the user's requirements. The system block diagram is shown
in Fi gure A. 1

.

A resident real time control program relieves the user
of having to do any programming to use the system.
Instead, the user describes the block diagram of his de-
sired control strategy in terms of "functional blocks, "

each of which provides a single mathematical or control op-
eration. The system asks a series of questions to learn
the types, inputs and other parameters which completely
describe each block needed in the strategy and its rela-
tionship to other blocks and the process. An example oF a

single loop feedback control strategy is shown in Figure
c

81

Sy stem

Terminal
->

Micro-

computer

Connection Panel

Inputs to System

PDP-11/60

C o m p u t e r

Outputs from System

Physical Proc ess

Figure A. 1. System Block Diagram

Control Desired: Proportional-integral, with unity
gain, a reset of 1/120 seconds and a setpoint of 2.0.

BLOCK BOO BOO Parameters

Type:
X:

Y:

Ga in

:

Constant
Reset:
Rate:

PID
2.

S00
1

NO
0. 0083

Figure A. 2. Single Loop Feedback Example

SYSTEM OPERATING MODE

The 4 modes of operation of the system and their uses
are

1. FILE: Create configuration file which de-
er ibes desired control strategy.

2. MODIFY: Edit the configuration file currently
in the sy stem.

3. RUN: Execute real time control over the proc-
ess connected to the system according to the
strategy described in the configuration file
currently in the system.

4. TERMINAL: System terminal becomes remote ter-
minal of PDP-11/60 computer system.

FUNCTIONAL BLOCKS

A control strategy may use from 1 to a maximum of 32
blocks. The blocks are numbered by the system from BOO to
B31. During real time control of a process/ the system
performs the block operations in block number order. The
user is advised to define blocks such that a block's output
will not be used as an input to a lower numbered block.

The constants used with a block, such as a set point
input/ are decimal numbers. The numbers may be signed/ may
be up to a maximum of 5 digits and may have the decimal
place anywhere among the digits.

The parameters that define a block are:

1. TYPE: Type of function to perform. Each type
has a three letter name.

2. INPUTS: X, Y. All type except SQT and SCL use
both inputs. An input may be any system input
channel/ any block output or a constant. (X

and Y may not both be constants.)

3. GAIN: The results of the function performed on
the inputs to the block is multiplied by the
block gain. The gain is a decimal constant.

4. CONSTANT OUTPUT: This is an option for a

block. If selected, the output of the block is

S3

held equal to a constant value, regardless of
the inputs to the block. It is used to set in-
itial conditions for the RUN mode, where the
option can be removed when desired.

5. OUTPUT CONSTANT: This is the constant value
used by a block selected for constant output.
It is required only when the option is chosen.

6. RESET: This is R (or 1/Ti) for a PID block.
It only appears for blocks defined as PID con-
trol blocks. It is a positive constant between

and 99999 (1/seconds).

7. RATE: This is D (or Td) for a PID block. It
also only appears for blocks defined as PID
control blocks. It is a positive constant
between and 99999 (seconds).

The block types available and their functions are:

Adds X and Y inputs.

Subtracts Y input from X input.

Multiplies X input by Y input.

Divides X input by Y input.

Takes square root of X input.

Scales X input by block gain.

Provides P/PI/PID algorithm.

NOTE: Algorithm subtracts process variable, Y
input, from set point, X input.

SYSTEM START-UP

The system is started by first tuning on power to the
system terminal then to the microcomputer. After power has
been applied, press the reset button on the microcomputer
to reset the hardware and software. The system terminal
will display the system menu. Any time the system menu is

displayed, typing in a system command will initiate the as-
sociated mode of operation. The system menu, as seen when
the system is ready, is shown in Figure A3.

1. ADD:

2. SUB:

3. MUL:

4. DIV:

5. SQT:

6. SCL:

/ . PID:

84

PCS VI. 1

PLEASE ENTER SYSTEM COMMAND DESIRED, FOLLOWED BY <CR>

FILE CREATE PROCESS CONTROL CONFIGURATION FILE

MOD MODIFY CURRENTLY DEFINED CONFIGURATION FILE

PDP ACCESS PDP-11/60 AS A REMOTE TERMINAL

RUN RUN CONFIGURATION FILE AS A REAL TIME PROGRAM

EXIT STOP FUNCTION AND RETURN TO HERE

"*" is system prompt for input from user.
"< >" identifies special key.

Figure A3. System Menu

CREATING AND MODIFYING A CONFIGURATION FILE

Creating and modifying a configuration file are initi-
ated by separate system commands. FILE and MOD, respective-
ly, but are very similar in operation. They proceed
through the same sections, offer the same questions and
prompts and are interested in generally the same informa-
tion. The two major differences between them are that in
modifying a file, the old answer to a question is displayed
in addition to the question, and in the modify mode, skip-
ping past questions, blocks and sections is permitted to
speed access to the material to be changed.

Creating and modifying a configuration file are han-
dled according to the following sections:

1. File Name: Identifies file for user conveni-
enc e. Op t i ona 1

.

2. Data File Name: Name of file being used to
save data. This provides a record of the data
file associated with this configuration for the
user's convenience. Optional.

3. Sampling Period: The sampling period of the

35

real rime process control action.

4. Block Bxx Definition: Defines the blocks used
in the control strategy Blocks are presented
sequentially, beginning with BOO.

5. Output Cxx Definition: Defines which points
within the control strategy to connect to the
process through the output control channels.
Channels are presented sequentially- beginning
with COO.

6. Data Point Dxx Definition: Defines points in
the control strategy to display on the system
terminal (and send to the PDP-11 if a file has
been opened) during real time control of the
process. Points are presented sequentially,
starting with DOO.

When modifying a file, the inputs used to skip
past material are:

1. <CR> Skips to next question.

2. <LF> Skips to next block. (In sections without
blocksi skips to next section.)

3. !ESC> Skips to next section.

An example of the dialog between the user and system
in defining a block during file creation) is shown in Fig-
ure A. 4.

FUNCTIONAL BLOCK DEFINITION, MAXIMUM 32 BLOCKS
WHEN NO MORE BLOCKS DESIRED, ENTER <ESC> FOR TYPE
BLOCK NUMBER = BOO
TYPE? ADD, SUB.MUL, DIV, SQT, SCL OR PID <CR>
*PID <CR>

X INPUT? S00-S15, B00-B31 OR MAX 5 DIGIT CONSTANT <CR>
*2. :cr>

Y INPUT? SOO-S15, B00-B31 OR MAX 5 DIGIT CONSTANT <CR>
*SOO <CR>

sain? max 5 digit constant <cr:

*i <cr>

CONSTANT OUTPUT? YES OR NO <CR>
*NQ <CR>

PID RESET? TO 99999 (1/SECS) <CR>
*0. 0083 <CR>

PID RATE? TO 99999 (SECS) <CR>
*0 <CR>

User input is shown underlined
"*" is system prompt
"

-C > " identifies special key.

Figure A. 4. Example of Block Def:nition

RUNNING A CONFIGURATION FILE

Executing real time control of a process is accom-
plished by selecting the system command RUN. The system
will then ask for the command "GO, " signifying the process
is connected to the system and is ready. After entering
"GO" the user may remove initial conditions, or make any
other changes to the constants in the control strategy by
entering the block number of the block to be changed. All
constant output options can be removed simultaneously by
entering "ALL" instead of a block number. An example of
the terminal display seen while the system is executing a

process control strategy is shown in Figure A. 5.

RUN PROCESS CONTROL CONFIGURATION
TINE 02: 37

DOO =

D01
D02 =

3. 3234
-. 00005

1 . 0000

ENTER HALT <CR> TO STOP
ENTER BLOCK NUMBER <CR> TO CHANGE BLOCK
*

'*" is system prompt for input.
1 < >" identifies special key.

Figure A. 5. Example of Run Mode Display

The process control action can be stopped at any time
by entering "HALT. " After a halt, the process may be re-
started (from the point where halted) or the user may exit
the mode with the "EXIT" command.

REMOTE TERMINAL

The user may gam direct access to the PDP-11 computer
by entering the system command PDP. In addition to being
able to fully use the PDP-11 operating system, the user may
also exchange configuration and data files between the two
systems. This is accomplished by running the PDP-11 pro-
gram "$PCS" from the terminal. The program enables config-
uration files to be stored on the PDP-11 system and later
down-loaded back to the process control system. It also
enables data files to be set up to receive real time data
from the process control system. Further details concern-
ing the $PCS program can be obtained from the PDP-11/60
System Manager. This mode is exited by entering the escape
character <ESC>.

Append i x 3

MEMORY MAP

Table B. 1 provides a map of the process control system

memory.

Start Address Length Use

OOOOH
003CH

0040H
0040H
0226H
04CBH
0584H
06BBH
0826H
OA50H
11CDH
13BFH

152FH

3000H

4100H
413FH
41A9H
41C9H
41D1H
4525H

4DDSH

3H Absolute
3H Absolute

Start from zero.
Interrupt Vector.

14EFH Code: Includes Modules
E6H PCSEXC. OBJ

2A5H PCSCFG. OBJ
B9H PCSRUN. OBJ
137H PCSPDP. OBJ
16BH LIBIOR. OBJ
22AH LIBREC. OBJ
77DH LIBFIL. OBJ
1F2H LIBFLT. OBJ
170H LIBRUN. OBJ

CH Stack

1100H Memory

:

Op en

CD8H Data: Inc 1 ud<35 Buffers
8AH LINE
20H ADCBUF
8H DACBUF

354H Run Ta!j 1 es
8B3H CFG Fi!Le

3328H Memory: Open

Table B. 1. Process Control System, Memory Map

Thesis 198^73
N3614 Nelson
c.l The design of a

microcomputer based
generalized process
control system.

1

1 7 9

Thesis
N3614
c.l

Nelson
The design of a

microcomputer based

generalized process

control system.

1991*73

thesN3614

™f,»,°famc,ocomPute' based

111

gene

3 2768 001 00848 5
DUDLEY KNOX LIBRARY

VWK

nfiSSGD

